PSpice Model for a Lossless Transmission Line

where: $V_{a}(t)=V(\ell, t-T)-Z_{o} I(\ell, t-T) \quad$ and

$$
V_{b}(t)=V(0, t-T)+Z_{o} I(0, t-T)
$$

To prove that Network "A" sees the equivalent circuit shown, we first note that the total voltage and current at any point of a transmission line can be expressed as the sum of forward and backward travelling components:

$$
\begin{equation*}
V=V^{+}+V^{-} \text {and } I=I^{+}+I^{-}=\frac{1}{Z_{0}}\left[V^{+}-V^{-}\right] \tag{1}
\end{equation*}
$$

From these, we find:

$$
\begin{equation*}
V^{+}=\frac{1}{2}\left[V+Z_{0} I\right] \text { and } V^{-}=\frac{1}{2}\left[V-Z_{0} I\right] \tag{2}
\end{equation*}
$$

We can use (1) to expand the total voltage $V(0, t)$ at the left side of the line as:

$$
V(0, t)=V^{+}(0, t)+V^{-}(0, t)
$$

Since $V^{-}(0, t)$ is backward (left) propagating, its value at the left side at time t is the same as its value at the right side at earlier time $t-T$, so we can write:

$$
V(0, t)=V^{+}(0, t)+V^{-}(\ell, t-T)
$$

Next, using (2), we can write both $V^{+}(0, t)$ and $V^{-}(\ell, t-T)$ in terms of total voltages and currents, yielding

$$
V(0, t)=\frac{1}{2}\left[V(0, t)+Z_{0} I(0, t)\right]+\frac{1}{2}\left[V(\ell, t-T)-Z_{0} I(\ell, t-T)\right]
$$

From which we finally obtain:

$$
V(0, t)=Z_{0} I(0, t)+V(\ell, t-T)-Z_{0} I(\ell, t-T)
$$

Which is exactly what we get by doing KVL around the left equivalent circuit at Network A. A similar development proves that right-hand equivalent circuit is indeed "seen" at Network "B"

